Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ContrastLOS: A Graph-Based Deep Learning Model With Contrastive Pre-Training for Improved ICU Length-of-Stay Prediction

Authors: Guangrui Fan; Aixiang Liu; Chao Zhang;

ContrastLOS: A Graph-Based Deep Learning Model With Contrastive Pre-Training for Improved ICU Length-of-Stay Prediction

Abstract

Accurate prediction of intensive care unit (ICU) length of stay (LOS) is crucial for optimizing resource allocation and improving patient outcomes. We propose ContrastLOS, a novel graph-based deep learning model that integrates graph transformer networks with contrastive pre-training to enhance ICU LOS prediction. By constructing dynamic patient similarity graphs, ContrastLOS captures intricate inter-patient relationships and temporal dependencies. Through contrastive learning on unlabeled data, the model develops robust patient embeddings suitable for both classification and regression tasks. Experiments on three comprehensive ICU datasets—MIMIC-III, MIMIC-IV v3.0, and eICU—show that ContrastLOS consistently outperforms state-of-the-art baselines. For classification (predicting whether LOS exceeds 3 or 7 days), it achieves AUROC scores of up to 82.1%, improving performance by up to 5.2% compared to competitive methods. In regression tasks, ContrastLOS attains the lowest RMSE (2.41 days) and MAE (1.48 days) on the multi-center eICU dataset. Notably, it maintains an AUROC of 76.8% with only 10% labeled data, highlighting its effectiveness in low-resource settings. These findings suggest that ContrastLOS can serve as a robust clinical decision support tool for critical care management.

Related Organizations
Keywords

healthcare AI, length of stay (LOS) prediction, graph-based learning, Contrastive pre-training, intensive care unit (ICU), Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold