Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Image Processingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Image Processing
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Field programmable gate array implementation of variable‐bins high efficiency video coding CABAC decoder with path delay optimisation

Authors: Wahiba Menasri; Abdellah Skoudarli; Aichouche Belhadj; Mohamed Salah Azzaz;

Field programmable gate array implementation of variable‐bins high efficiency video coding CABAC decoder with path delay optimisation

Abstract

Context‐based adaptive binary arithmetic coding (CABAC) is a single operation mode for entropy coding in the last video coding standard high‐efficiency video coding. For high‐resolution applications, the throughput of one bin/cycle is not sufficient and it is a very challenging task to implement pipeline and/or parallel CABAC decoding architecture by simply adding more stages. Indeed, the tight data dependencies make it difficult to parallelise and cause it to be a throughput bottleneck for video decoding. Consequently, in order to improve the CABAC decoder throughput, parallel and pipeline architectures are used in authors’ design. In this work, an algorithm‐architecture adequation is proposed to implement a CABAC decoder on a field programmable gate array. Mainly, a new classification of 32 syntax elements is given to speed up the authors’ solution. Furthermore, the context selection and modelling of regular syntax elements are studied, designed and implemented. Finally, a novel technique of memories rearrangement to reduce the critical path delay required to process each binary symbol is proposed. As a result, the implementation can process 2.2 bins/cycle when operated at 123.49 MHz and exhibits an improved high‐throughput of 271.678 Mbins/s. The hardware architecture is coded using hardware description language and synthesised using ISE Xilinx tools targeting the Virtex4 platform.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Top 10%
gold