Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Power Electronics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of Electric Field Calculation Methods for Optimization Routines to Design Medium-Frequency Transformer Insulation

Authors: Bastian Korthauer; Jürgen Biela;

Comparison of Electric Field Calculation Methods for Optimization Routines to Design Medium-Frequency Transformer Insulation

Abstract

Since the insulation volume of medium-frequency transformers (MFTs) typically constitutes a significant fraction of the overall transformer volume, design routines focusing on optimizing insulation are crucial. Such optimization requires fast and accurate electric field computations in several critical regions of the MFT, making the choice of effective computation methods essential. This paper compares suitable methods, including the Schwarz-Christoffel transformation (SCT), the charge simulation method (CSM), and commonly used analytical approaches, by benchmarking them against nearly 4000 finite element analysis (FEA) simulations. Each method's error is analyzed, and a sensitivity study is performed to define the parameter ranges where each method yields accurate results. The CSM is found to provide the most accurate field computation (< 5% error) across all examined critical regions. However, to compensate for its increased computation time for geometries with rectangular conductors, combining the CSM with the SCT-which is approximately 10 times faster-is recommended to achieve optimal performance.

IEEE Open Journal of Power Electronics, 6

ISSN:2644-1314

Related Organizations
Keywords

Medium-frequency transformer, medium-frequency transformer, Converter optimization, insulation optimization, Schwarz-Christoffel transformation, insulation design, Electric field computation, TK1-9971, electric field computation, Insulation design, converter optimization, Electrical engineering. Electronics. Nuclear engineering, Charge simulation method, Insulation optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold