Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1109/date.2...
Article . 2012 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Conference object . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An operational matrix-based algorithm for simulating linear and fractional differential circuits

Authors: Wang, Y; Liu, H; Pang, GKH; Wong, N;

An operational matrix-based algorithm for simulating linear and fractional differential circuits

Abstract

We present a new time-domain simulation algorithm (named OPM) based on operational matrices, which naturally handles system models cast in ordinary differential equations (ODEs), differential algebraic equations (DAEs), high-order differential equations and fractional differential equations (FDEs). When applied to simulating linear systems (represented by ODEs or DAEs), OPM has similar performance to advanced transient analysis methods such as trapezoidal or Gear's method in terms of complexity and accuracy. On the other hand, OPM naturally handles FDEs without much extra effort, which can not be efficiently solved using existing time-domain methods. High-order differential systems, being special cases of FDEs, can also be simulated using OPM. Moreover, adaptive time step can be utilized in OPM to provide a more flexible simulation with low CPU time. Numerical results then validate OPM's wide applicability and superiority. © 2012 EDAA.

The 2012 Design, Automation, and Test in Europe Conference and Exhibition (DATE'12), Dresden, Germany, 12-16 March 2012. In Design, Automation, and Test in Europe Conference and Exhibition Proceedings, 2012, p. 1463-1466

published_or_final_version

Country
China (People's Republic of)
Related Organizations
Keywords

Differential algebraic equations, Flexible simulation, Differential systems, CPU time, Adaptive time step

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!