Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical and Translational Science
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical and Translational Science
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

74123 A Learning Health Systems approach using health record data to construct patient frailty scores and predict safety events

Authors: Alex Bokov; Sara Espinoza; Chandana Tripathy; Kathleen Stevens;

74123 A Learning Health Systems approach using health record data to construct patient frailty scores and predict safety events

Abstract

ABSTRACT IMPACT: Laying the groundwork for better predictive algorithms to inform clinical decisions and planning. OBJECTIVES/GOALS: Frailty scores predict poor patient outcomes. Validated against highly relevant outcomes, such scores can be used to inform clinical and resource utilization decisions. We generated and validated an electronic Frailty Index (EFI) from real-world EHR data using the Rockwood deficit-accumulation framework to predict patient safety events. METHODS/STUDY POPULATION: To assure that the research approach reflected perspectives of multiple stakeholders, our multidisciplinary group included an implementation scientist, a geriatrician, an internist, and an informatician. From our large academic health center, we accessed EHR data for 14,844 patients randomly sampled from the data warehouse underlying our ACT/SHRINE node. The per-visit EFI scores were calculated using EHR codes in a rolling 2-year time window. EFI was used as the predictor variable in the analytic design. The primary outcomes were preventable patient-safety events derived from ICD-10 codes including hospital-acquired infections, non-operative hospital-acquired trauma, and cardiac complications. Cox proportional hazard models were used to estimate risk for each outcome. RESULTS/ANTICIPATED RESULTS: We found statistically significant associations of EFI with clinically meaningful outcomes from EHR data. For most outcomes, we found significant correlation with EFI and c-statistics indicating good calibration of the models. The EFI was a strong predictor of clinically relevant outcomes without relying on any data other than diagnoses, vital signs, and laboratory results from the EHR. In contrast to previous studies, we treated EFI as a time-varying predictor with multiple follow-ups per patient, which is more realistic than relying on one static time-point. We used a representative sample of the adult patient population rather than limiting it to older individuals and found EFI to be a useful metric even at relatively young ages. DISCUSSION/SIGNIFICANCE OF FINDINGS: The EFI predicted safety events in adult patients using only routine, structured EHR data and can offer a low-effort, scalable method of risk assessment, valuable to clinical decisions. The capability to harness EHR data and rapidly generate clinical knowledge can be transformative for complex care and contributes to Learning Health Systems.

Keywords

R, Medicine, Data Science/Biostatistics/Informatics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold