
In combinatorial auctions, buyers and sellers bid not only for single items but also for combinations (or “bundles”, or “baskets”) of items. Clearing the auction is in general an NP-hard problem; it is usually solved with integer linear programming. We proposed in an earlier paper a continuous approximation of this problem, where orders are aggregated and integrality constraints are relaxed. It was proved that this problem could be solved efficiently in two steps by calculating two fixed points, first the fixed point of a contraction mapping, and then of a set-valued function. In this paper, we generalize the problem to incorporate constraints on maximum price changes between two auction rounds. This generalized problem cannot be solved by the aforementioned methods and necessitates reverse convex programming techniques.
Auctions, bargaining, bidding and selling, and other market models, Convex programming, Combinatorial optimization, Integer programming, Combinatorial games
Auctions, bargaining, bidding and selling, and other market models, Convex programming, Combinatorial optimization, Integer programming, Combinatorial games
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
