Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Automation Science and Engineering
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

WCE Abnormality Detection Based on Saliency and Adaptive Locality-Constrained Linear Coding

Authors: Yixuan Yuan; Baopu Li; Max Q.-H. Meng;

WCE Abnormality Detection Based on Saliency and Adaptive Locality-Constrained Linear Coding

Abstract

Wireless capsule endoscopy (WCE) has become a widely used diagnostic technique for the digestive tract, at the price of a large volume of data that needs to be analyzed. To tackle this problem, a new computer-aided system using novel features is proposed in this paper to classify WCE images automatically. In the feature learning stage, to obtain the representative visual words, we first calculate the color scale invariant feature transform from the bleeding, polyp, ulcer, and normal WCE image samples separately and then apply $K$ -means clustering on these features to obtain visual words. These four types of visual words are combined together to composite the representative visual words for classifying the WCE images. In the feature coding stage, we propose a novel saliency and adaptive locality-constrained linear coding (SALLC) algorithm to encode the images. The SALLC encodes patch features based on adaptive coding bases, which are calculated by the distance differences among the features and the visual words. Moreover, it imposes the patch saliency constraint on the feature coding process to emphasize the important information in the images. The experimental results exhibit a promising overall recognition accuracy of 88.61%, validating the effectiveness of the proposed method.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!