Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

3D Computational-Fluid-Dynamics Modeling of Horizontal Three-Phase Separators: An Approach for Estimating the Optimal Dimensions

Authors: Ahmadreza Ghaffarkhah; Mohammadjavad Ameri Shahrabi; Mostafa Keshavarz Moraveji;

3D Computational-Fluid-Dynamics Modeling of Horizontal Three-Phase Separators: An Approach for Estimating the Optimal Dimensions

Abstract

Summary This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations depending on the fluid properties of an Iranian gas/condensate field. We then devised a comprehensive computational-fluid-dynamics (CFD) method for analyzing the phenomena of three-phase separation. The results in terms of separation efficiency and behavior of secondary-phase particles were reviewed to choose the optimal configuration. Only a slight difference in the length of this vessel and the existing separator was found. In addition, simulation data were compared with industrial data pertaining to a similar existing separator. The results of this work showed that the CFD model used is capable of investigating the performance of three-phase separators.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!