
Nowadays, software vulnerabilities pose a serious problem, because cyber-attackers often find ways to attack a system by exploiting software vulnerabilities. Detecting software vulnerabilities can be done using two main methods: i) signature-based detection, i.e. methods based on a list of known security vulnerabilities as a basis for contrasting and comparing; ii) behavior analysis-based detection using classification algorithms, i.e., methods based on analyzing the software code. In order to improve the ability to accurately detect software security vulnerabilities, this study proposes a new approach based on a technique of analyzing and standardizing software code and the random forest (RF) classification algorithm. The novelty and advantages of our proposed method are that to determine abnormal behavior of functions in the software, instead of trying to define behaviors of functions, this study uses the Word2vec natural language processing model to normalize and extract features of functions. Finally, to detect security vulnerabilities in the functions, this study proposes to use a popular and effective supervised machine learning algorithm.
source code features, machine learning algorithms, software security vulnerability detection, natural language processing techniques, Telecommunication, TK5101-6720, Information technology, T58.5-58.64, software vulnerabilities
source code features, machine learning algorithms, software security vulnerability detection, natural language processing techniques, Telecommunication, TK5101-6720, Information technology, T58.5-58.64, software vulnerabilities
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
