Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Challenges for evolutionary multiobjective optimization algorithms in solving variable-length problems

Authors: Hui Li; Kalyanmoy Deb;

Challenges for evolutionary multiobjective optimization algorithms in solving variable-length problems

Abstract

In recent years, research interests have been paid in solving real-world optimization problems with variable-length representation. For population-based optimization algorithms, the challenge lies in maintaining diversity in sizes of solutions and in designing a suitable recombination operator for achieving an adequate diversity. In dealing with multiple conflicting objectives associated with a variable-length problem, the resulting multiple trade-off Pareto-optimal solutions may inherently have different variable sizes. In such a scenario, the fixed recombination and mutation operators may not be able to maintain large-sized solutions, thereby not finding the entire Pareto-optimal set. In this paper, we first construct multiobjective test problems with variable-length structures, and then analyze the difficulties of the constructed test problems by comparing the performance of three state-of-the-art multiobjective evolutionary algorithms. Our preliminary experimental results show that MOEA/D-M2M shows good potential in solving the multiobjective test problems with variable-length structures due to its diversity strategy along different search directions. Our correlation analysis on the Pareto solutions with variable sizes in the Pareto front indicates that mating restriction is necessary in solving variable-length problem.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!