
Path following is a challenging task for legged robots. In this paper, we present a hierarchical control architecture for path following of a quadruped salamander-like robot, in which, the tracking problem is decomposed into two sub-tasks: high-level policy learning based on the framework of reinforcement learning (RL) and low-level traditional controller design. More specifically, the high-level policy is learned in a physics simulator with a low-level controller designed in advance. To improve the tracking accuracy and to eliminate static errors, a soft Actor-Critic algorithm with state integral compensation is proposed. Additionally, to enhance the generalization and transferability, a compact state representation, which only contains the information of the target path and the abstract action similar to front-back and left-right, is proposed. The proposed algorithm is trained offline in the simulation environment and tested on the self-developed real quadruped salamander-like robot for different path following tasks. Simulation and experiments results validate the satisfactory performance of the proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
