Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iterative Method for Noise Power Estimating at Unknown Spectrum Occupancy

Iтеративний метод оцiнювання рiвня шуму при невiдомiй зайнятостi смуги частот аналiзу
Authors: M. V. Buhaiov;

Iterative Method for Noise Power Estimating at Unknown Spectrum Occupancy

Abstract

Noise power estimating is the core of modern radio monitoring systems for solving tasks of spectrum occupancy calculation, detecting and estimating signal parameters. The growth of electronic devices number leads to an increase in overall noise level and its fast fluctuations. These devices often emit pulses or separate carriers. Since radio monitoring equipment must operate under these conditions, it may not be possible to exclude these components from radio noise measurements. It was shown that in some cases an increase in the noise power by 20% of the expected value leads to an increase in the false alarm rate by an order. The aim of this work is to develop and explore an iterative method for estimating the noise power with an unknown occupancy of the analysis frequency band, which will have low computational complexity and estimates independent of spectrum occupancy. The essence of the proposed method consists in two-threshold division of frequency samples into signal and noise by a statistical criterion using the coefficient of variation of spectral estimates. Thresholds are selected for a given false alarm rate. When threshold value of the coefficient of variation is exceeded, it is considered that there are occupied frequency channels in the spectrum, and each frequency sample is compared with the second threshold. Those samples that have exceeded the threshold are considered signal, and the rest -- noise. The described procedure is then repeated for noise samples until all signal samples have been discarded. Also was developed method for calculating the noise power in time domain using the obtained noise power in frequency domain. Algorithm evaluation has shown that it remains robust for spectrum occupancy up to 60%. In this case, the relative error in estimating the noise power does not exceed 5%, and the average number of iterations of the algorithm grows with increasing occupancy and does not exceed 10.

Country
Ukraine
Keywords

радiочастотний спектр, рiвень шуму, радiомонiторинг, radio monitoring, коефiцiєнт варiацiї, перiодограма, периодограмма, TK5101-6720, periodogram, noise power, iтеративний метод, coefficient of variation, iterative method, итеративный метод, радиочастотный спектр, коэффициент вариации, periodogram; radio monitoring, радиомониторинг, Telecommunication, зайнятiсть смуги частот, занятость полосы частот, уровень шума, spectrum occupancy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold