
We present a time-stepper based approach to the 'coarse' integration and stability/bifurcation analysis of distributed reacting system models. The methods we discuss are applicable to systems for which the traditional modeling approach through macroscopic evolution equations (usually partial differential equations, PDEs) is not possible because the PDEs are not available in closed form. If an alternative, microscopic (e.g. Monte Carlo or Lattice Boltzmann) description of the physics is available, we illustrate how this microscopic simulator can be enabled (through a computational superstructure) to perform certain integration and numerical bifurcation analysis tasks directly at the coarse, systems level. This approach, when successful, can circumvent the derivation of accurate, closed form, macroscopic PDE descriptions of the system. The direct 'systems level' analysis of microscopic process models, facilitated through such numerical 'enabling technologies', may, if practical, advance our understanding and use of nonequilibrium systems. © 2002 Elsevier Science Ltd. All rights reserved.
Multiscale computation, Projective integration, Lattice Boltzmann models, Bifurcation
Multiscale computation, Projective integration, Lattice Boltzmann models, Bifurcation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 152 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
