Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/compsa...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC SA
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming

Authors: Sharma, Aasish Kumar; Pandey, Sanjeeb Prashad; Kunkel, Julian M.;

Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming

Abstract

Convolutional Neural Networks (CNNs) are pivotal in computer vision and Big Data analytics but demand significant computational resources when trained on large-scale datasets. Conventional training via back-propagation (BP) with losses like Mean Squared Error or Cross-Entropy often requires extensive iterations and may converge sub-optimally. Quantum computing offers a promising alternative by leveraging superposition, tunneling, and entanglement to search complex optimization landscapes more efficiently. In this work, we propose a hybrid optimization method that combines an Unconstrained Binary Quadratic Programming (UBQP) formulation with Stochastic Gradient Descent (SGD) to accelerate CNN training. Evaluated on the MNIST dataset, our approach achieves a 10--15\% accuracy improvement over a standard BP-CNN baseline while maintaining similar execution times. These results illustrate the potential of hybrid quantum-classical techniques in High-Performance Computing (HPC) environments for Big Data and Deep Learning. Fully realizing these benefits, however, requires a careful alignment of algorithmic structures with underlying quantum mechanisms.

11 pages, 22 figures, accepted in IEEE COMPSAC 2025 Conference. Preprint before peer review

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green