Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vietnam Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vietnam Journal of Computer Science
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vietnam Journal of Computer Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/ca...
Other literature type . 2014
Data sources: Datacite
https://dx.doi.org/10.60692/bh...
Other literature type . 2014
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes

خوارزميات الانحدار العشوائي المتوازية متعددة الطبقات لتصنيف ملايين الصور ذات التوقيعات عالية الأبعاد إلى آلاف الفصول
Authors: Thanh-Nghi Do;

Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes

Abstract

Les nouveaux algorithmes de descente de gradient stochastique multi-classes parallèles visent à classer des millions d'images avec des signatures de très haute dimension en milliers de classes. Nous étendons la descente de gradient stochastique (SGD) pour les machines à vecteurs de support (SVM-SGD) de plusieurs façons pour développer le nouveau SVM-SGD multiclasse pour classer efficacement de grands ensembles de données d'image dans de nombreuses classes. Nous proposons (1) un algorithme de formation équilibré pour l'apprentissage des classificateurs binaires SVM-SGD, et (2) un processus de formation parallèle des classificateurs avec plusieurs ordinateurs/grilles multicœurs. L'évaluation sur 1000 classes d'ImageNet, ILSVRC 2010 montre que notre algorithme est 270 fois plus rapide que le classificateur linéaire de pointe LIBLINEAR.

Los nuevos algoritmos de descenso de gradiente estocástico multiclase paralelos tienen como objetivo clasificar millones de imágenes con firmas de muy alta dimensión en miles de clases. Ampliamos el descenso de gradiente estocástico (SGD) para máquinas de vectores de soporte (SVM-SGD) de varias maneras para desarrollar el nuevo SVM-SGD multiclase para clasificar de manera eficiente grandes conjuntos de datos de imágenes en muchas clases. Proponemos (1) un algoritmo de entrenamiento equilibrado para aprender clasificadores binarios SVM-SGD, y (2) un proceso de entrenamiento paralelo de clasificadores con varios ordenadores/cuadrícula multinúcleo. La evaluación de 1000 clases de ImageNet, ILSVRC 2010 muestra que nuestro algoritmo es 270 veces más rápido que el clasificador lineal de última generación LIBLINEAR.

The new parallel multiclass stochastic gradient descent algorithms aim at classifying million images with very-high-dimensional signatures into thousands of classes. We extend the stochastic gradient descent (SGD) for support vector machines (SVM-SGD) in several ways to develop the new multiclass SVM-SGD for efficiently classifying large image datasets into many classes. We propose (1) a balanced training algorithm for learning binary SVM-SGD classifiers, and (2) a parallel training process of classifiers with several multi-core computers/grid. The evaluation on 1000 classes of ImageNet, ILSVRC 2010 shows that our algorithm is 270 times faster than the state-of-the-art linear classifier LIBLINEAR.

تهدف خوارزميات الانحدار العشوائي متعددة الطبقات الموازية الجديدة إلى تصنيف ملايين الصور ذات التوقيعات عالية الأبعاد إلى آلاف الفئات. نوسع نطاق نزول التدرج العشوائي (SGD) لآلات ناقلات الدعم (SVM - SGD) بعدة طرق لتطوير SVM - SGD الجديد متعدد الطبقات لتصنيف مجموعات بيانات الصور الكبيرة بكفاءة إلى العديد من الفئات. نقترح (1) خوارزمية تدريب متوازنة لتعلم مصنفات SVM - SGD الثنائية، و (2) عملية تدريب موازية للمصنفات مع العديد من أجهزة الكمبيوتر/الشبكة متعددة النوى. يُظهر التقييم على 1000 فئة من ImageNet، ILSVRC 2010 أن خوارزميتنا أسرع 270 مرة من المصنف الخطي المتطور LIBLINEAR.

Keywords

Artificial neural network, Radiology, Nuclear Medicine and Imaging, Artificial intelligence, Support vector machine, Semi-Supervised Learning, Visual Recognition, Representation Learning, Pattern recognition (psychology), Detection and Management of Retinal Diseases, Deep Learning, Stochastic gradient descent, Automated Analysis of Blood Cell Images, Artificial Intelligence, Health Sciences, Machine learning, Binary classification, Gradient descent, Transfer Learning, Computer science, Algorithm, Multiclass classification, Advances in Transfer Learning and Domain Adaptation, Computer Science, Physical Sciences, Medicine, Computer Vision and Pattern Recognition, Classifier (UML)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
gold