
Characteristics of the development of an impulsively started flow around an expanded trapezoidal cylinder were studied numerically. A stream function‐vorticity formulation in a body coordinate system was used to describe the unsteady flow field. The inflow Reynolds number considered ranges from 25 to 1,000. Pressure contours, surface pressure coefficient and drag coefficient were studied through the streamline flow field. Main‐flow and sub‐flow regimes are identified through an analysis of the evolution of the flow characteristics. Typically, for a given expanded trapezoidal cylinder, it is noted that flow starts with minimum separation at the aft end. As time advances, symmetrical standing zone of recirculation develops aft of the cylinder. The rate of growth in width, length and structure of the aft end eddies depends on the Reynolds number. As time advances and at higher Reynolds numbers, separated flow from the leading edges of the trapezoidal cylinder develops along the upper and lower inclined surfaces of the trapezoidal cylinder. The separation bubbles on the upper and lower inclined surfaces of the cylinder grow towards the downstream regions with time and eventually merge with the swelling symmetrical eddies aft of the cylinder. This merging of the flows created a complex flow regime with a disturbed tertiary flow zone near the merging junction. For the flows considered here, eventually, depending on the Reynolds number and the expanded angle of the trapezoidal cylinder, the flow field develops into a specific category of symmetrical standing recirculatory flow with its own distinct characteristics.
impulsively started flow, Navier-Stokes equations for incompressible viscous fluids, successive overrelaxation iterative procedure, Finite difference methods applied to problems in fluid mechanics, 620, 510, body coordinate system, pressure coefficient, streamfunction-vorticity formulation, drag coefficient, trapezoidal cylinder
impulsively started flow, Navier-Stokes equations for incompressible viscous fluids, successive overrelaxation iterative procedure, Finite difference methods applied to problems in fluid mechanics, 620, 510, body coordinate system, pressure coefficient, streamfunction-vorticity formulation, drag coefficient, trapezoidal cylinder
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
