
We present P6, a declarative language for building high performance visual analytics systems through its support for specifying and integrating machine learning and interactive visualization methods. As data analysis methods based on machine learning and artificial intelligence continue to advance, a visual analytics solution can leverage these methods for better exploiting large and complex data. However, integrating machine learning methods with interactive visual analysis is challenging. Existing declarative programming libraries and toolkits for visualization lack support for coupling machine learning methods. By providing a declarative language for visual analytics, P6 can empower more developers to create visual analytics applications that combine machine learning and visualization methods for data analysis and problem solving. Through a variety of example applications, we demonstrate P6's capabilities and show the benefits of using declarative specifications to build visual analytics systems. We also identify and discuss the research opportunities and challenges for declarative visual analytics.
Accepted for presentation at IEEE VIS 2020
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Computer Science - Programming Languages, Computer Science - Human-Computer Interaction, Human-Computer Interaction (cs.HC), Machine Learning (cs.LG), Programming Languages (cs.PL)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Computer Science - Programming Languages, Computer Science - Human-Computer Interaction, Human-Computer Interaction (cs.HC), Machine Learning (cs.LG), Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
