Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2016 . Peer-reviewed
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dense Subset Sum may be the hardest

Authors: Per Austrin; Petteri Kaski; Mikko Koivisto; Jesper Nederlof;

Dense Subset Sum may be the hardest

Abstract

The Subset Sum problem asks whether a given set of $n$ positive integers contains a subset of elements that sum up to a given target $t$. It is an outstanding open question whether the $O^*(2^{n/2})$-time algorithm for Subset Sum by Horowitz and Sahni [J. ACM 1974] can be beaten in the worst-case setting by a "truly faster", $O^*(2^{(0.5-��)n})$-time algorithm, with some constant $��> 0$. Continuing an earlier work [STACS 2015], we study Subset Sum parameterized by the maximum bin size $��$, defined as the largest number of subsets of the $n$ input integers that yield the same sum. For every $��> 0$ we give a truly faster algorithm for instances with $��\leq 2^{(0.5-��)n}$, as well as instances with $��\geq 2^{0.661n}$. Consequently, we also obtain a characterization in terms of the popular density parameter $n/\log_2 t$: if all instances of density at least $1.003$ admit a truly faster algorithm, then so does every instance. This goes against the current intuition that instances of density 1 are the hardest, and therefore is a step toward answering the open question in the affirmative. Our results stem from novel combinations of earlier algorithms for Subset Sum and a study of an extremal question in additive combinatorics connected to the problem of Uniquely Decodable Code Pairs in information theory.

14 pages

Countries
Finland, Netherlands, Netherlands, Netherlands, Germany
Keywords

FOS: Computer and information sciences, Additive combinatorics, Discrete Mathematics (cs.DM), Computer Science - Information Theory, exponential-time algorithm, cs.DM, Computational Complexity (cs.CC), cs.IT, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), math.IT, cs.CC, Information Theory (cs.IT), Subset Sum, littlewood–offord problem, 004, Computer Science - Computational Complexity, Exponential-time algorithm, cs.DS, Littlewood-offord problem, additive combinatorics, subset sum, Homomorphic hashing, homo-morphic hashing, Computer Science - Discrete Mathematics, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green