
handle: 20.500.12885/504 , 11454/62845
As cities grow, their complexity and the complexity of their infrastructure for various applications increase. Especially, transportation design is usually a very cumbersome process in current urban development models, and it is becoming more complex. Traditional approaches are not always sufficient to solve such complex problems, therefore, design disciplines like architecture and urban design need new tools to optimize many parameters related to their design. An alternate way to solve this problem can be via finding shortest routes. In this context, this study aims to evaluate different shortest path algorithms within a methodological approach to urban transportation planning via either experimentation or mathematical modeling. Three methods; namely live slime mold plasmodium, Floyd–Warshall algorithm, and ant colony algorithm are used to design a template for routes within the historical Kadifekale district of Izmir, Turkey. The results from these approaches are compared, contrasted, and discussed in terms of their suitability for use as a guide for route creation. In conclusion, the parameters of an algorithm are significant on suggesting routes, thus the strengths and weaknesses of an algorithm should be carefully considered before application in a design problem.
Ant colony optimization (ACO) algorithm, Physarum polycephalum (P. polycephalum), Slime molds, Floyd-Warshall (FW) algorithm, Route planning, Design template
Ant colony optimization (ACO) algorithm, Physarum polycephalum (P. polycephalum), Slime molds, Floyd-Warshall (FW) algorithm, Route planning, Design template
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
