
SPEEDY is a family of lightweight block ciphers designed by Leander et al. Several differential attacks have been reported on the SPEEDY variants. However, nearly all of these attacks are based on differential characteristics with probabilities that differ from their reported values. These discrepancies arise from incorrect calculations of the (key-averaged) probability, particularly in consecutive steps within one round without intermediate key addition. In this paper, we revisit all reported differential characteristics and accurately calculate their key-averaged probabilities using quasidifferential trails. We extend this to also estimate the fixed-key probability. Our analysis reveals several characteristics with zero or significantly altered probability, invalidating several proposed attacks. We further implement a search algorithm and find a 5.5-round differential distinguisher that can be used to mount a full-round key-recovery attack with a data complexity of 2183 and a time complexity of 2185. The memory complexity varies: in the chosen-plaintext setting, it is 2156, whereas in the chosen-ciphertext setting, it is 236.
Technology, Science & Technology, Computer Science, Theory & Methods, Key recovery, Computer Science, Differential cryptanalysis, SPEEDY, Computer Science, Software Engineering, Quasidifferential trails
Technology, Science & Technology, Computer Science, Theory & Methods, Key recovery, Computer Science, Differential cryptanalysis, SPEEDY, Computer Science, Software Engineering, Quasidifferential trails
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
