
Purpose. Assessment of power flow distribution in a microgrid with autonomous sources to identify the impact of power levels on frequency and voltage levels. Methodology. The analysis of existing research in the field of electric power engineering has been conducted, focusing on the management of power flows in microgrids with autonomous small- and medium-capacity generating units. As a result of the analysis, it has been established that a relevant challenge is the control and management of active and reactive power flows in microgrids to maintain the frequency and effective voltage level at a predefined value. It has been noted that this issue presents certain complexities due to the instability of primary energy flows from alternative sources, which can lead to both energy shortages and surpluses. Based on the theoretical foundations of electrical engineering and utilizing methods and techniques commonly applied in power supply system calculations, a simulation model with alternative energy sources has been developed, taking into account the power supply system structure of a small agricultural enterprise.. Findings. In the Simulink/Matlab visual programming environment, a simulation model has been developed that enables the study of active and reactive power distribution at network nodes and the monitoring of frequency and voltage magnitude variations. During the research, several experiments were conducted with specific distributions of active and reactive power between consumers and generating units in the microgrid under both parallel and autonomous operating conditions. As a result of the experiment involving disconnection from the external grid and changes in load levels, greater voltage fluctuations and a redistribution of reactive power between consumers and generating units were observed. This phenomenon is primarily caused by the formation of active and reactive power in the dynamic load block, where calculations are linked to the baseline voltage and frequency levels.. Originality. As a result of summarizing the obtained time diagrams, it was found that the calculation of active and reactive power, both for loads and generating units, must be performed considering the current frequency and voltage level at the observation node relative to the baseline values Practical value. The obtained results should be taken into account in the implementation of control systems for autonomous power sources, specifically in the methods for calculating the current controlled values of active and reactive power.
active power, активна потужність, frequency, реактивна потужність, voltage, баланс, напруга, balance, reactive power, частота
active power, активна потужність, frequency, реактивна потужність, voltage, баланс, напруга, balance, reactive power, частота
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
