
arXiv: 2004.14328
In this paper, we give a new penalized semidefinite programming approach for non-convex quadratically-constrained quadratic programs (QCQPs). We incorporate penalty terms into the objective of convex relaxations in order to retrieve feasible and near-optimal solutions for non-convex QCQPs. We introduce a generalized linear independence constraint qualification (GLICQ) criterion and prove that any GLICQ regular point that is sufficiently close to the feasible set can be used to construct an appropriate penalty term and recover a feasible solution. Inspired by these results, we develop a heuristic sequential procedure that preserves feasibility and aims to improve the objective value at each iteration. Numerical experiments on large-scale system identification problems as well as benchmark instances from the library of quadratic programming (QPLIB) demonstrate the ability of the proposed penalized semidefinite programs in finding near-optimal solutions for non-convex QCQP.
non-convex optimization, Numerical mathematical programming methods, convex relaxation, Optimization and Control (math.OC), nonlinear programming, FOS: Mathematics, Semidefinite programming, semidefinite programming, Nonconvex programming, global optimization, Mathematics - Optimization and Control
non-convex optimization, Numerical mathematical programming methods, convex relaxation, Optimization and Control (math.OC), nonlinear programming, FOS: Mathematics, Semidefinite programming, semidefinite programming, Nonconvex programming, global optimization, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
