Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems

Authors: Yanan Sun; Gary G. Yen; Zhang Yi;

IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems

Abstract

Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multi- and many-objective evolutionary algorithms. In this paper, an IGD indicator-based evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each generation to select the solutions with favorable convergence and diversity. In addition, a computationally efficient dominance comparison method is designed to assign the rank values of solutions along with three newly proposed proximity distance assignments. Based on these two designs, the solutions are selected from a global view by linear assignment mechanism to concern the convergence and diversity simultaneously. In order to facilitate the accuracy of the sampled reference points for the calculation of IGD indicator, we also propose an efficient decomposition-based nadir point estimation method for constructing the Utopian Pareto front which is regarded as the best approximate Pareto front for real-world MaOPs at the early stage of the evolution. To evaluate the performance, a series of experiments is performed on the proposed algorithm against a group of selected state-of-the-art many-objective optimization algorithms over optimization problems with $8$-, $15$-, and $20$-objective. Experimental results measured by the chosen performance metrics indicate that the proposed algorithm is very competitive in addressing MaOPs.

This paper has been accepted by IEEE Transactions on Evolutionary Computation

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    369
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
369
Top 0.1%
Top 1%
Top 0.1%
Green
bronze