
Over-the-air computation (AirComp) has recently emerged as a pivotal technique for communication-efficient federated learning (FL) in resource-constrained wireless networks. Though AirComp leverages the superposition property of multiple access channels for computation, it inherently limits its ability to manage inter-task interference in multi-task computing. In this paper, we propose a quantized analog beamforming scheme at the receiver to enable simultaneous multi-task FL. Specifically, inspiring by the favorable propagation and channel hardening properties of large-scale antenna arrays, a targeted analog beamforming method in closed form is proposed for statistical interference elimination. Analytical results reveal that the interference power vanishes by an order of $\mathcal{O}\left(1/N_r\right)$ with the number of analog phase shifters, $N_r$, irrespective of their quantization precision. Numerical results demonstrate the effectiveness of the proposed analog beamforming method and show that the performance upper bound of ideal learning without errors can be achieved by increasing the number of low-precision analog phase shifters.
Accepted by IEEE VTC-Spring 2025
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
