Downloads provided by UsageCounts
Nonlinear programming problem (NPP) had become an important branch of operations research, and it was the mathematical programming with the objective function or constraints being nonlinear functions. There were a variety of traditional methods to solve nonlinear programming problems such as bisection method, gradient projection method, the penalty function method, feasible direction method, the multiplier method. But these methods had their specific scope and limitations, the objective function and constraint conditions generally had continuous and differentiable request. The traditional optimization methods were difficult to adopt as the optimized object being more complicated. However, in this paper, mathematical programming techniques that are commonly used to extremize nonlinear functions of single and multiple (n) design variables subject to no constraints are been used to overcome the above challenge. Although most structural optimization problems involve constraints that bound the design space, study of the methods of unconstrained optimization is important for several reasons. Steepest Descent and Newton’s methods are employed in this paper to solve an optimization problem.
Mathematical Programming, Steepest Descent, Newton's Method, Nonlinear Programming Problem, Unconstrained Optimization
Mathematical Programming, Steepest Descent, Newton's Method, Nonlinear Programming Problem, Unconstrained Optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts