
In complex environments, three-dimensional path planning for agricultural UAVs involves the comprehensive consideration of multiple factors, including obstacle avoidance, path optimization, and computational efficiency, which significantly complicates the achievement of safe and efficient flight. As environmental complexity increases, the search space expands exponentially, thereby making the problem more challenging to solve and categorizing it as an NP-hard problem. To obtain an optimal or near-optimal path within this vast search space, it is essential to balance the path length, safety, and computational cost. This paper proposes a novel UAV path planning method based on the Hybrid Multi-Strategy Dung Beetle Optimization Algorithm (HMSDBO), which effectively reduces path length and improves path smoothness. First, a new Latin hypercube sampling strategy is introduced to significantly enhance the population diversity and improve the global search capabilities. Furthermore, an innovative golden sine strategy is proposed to greatly enhance the algorithm’s robustness. Lastly, a new hybrid adaptive weighting strategy is employed to improve the algorithm’s stability and reliability. To validate the effectiveness of HMSDBO, this study compares its performance with that of the Adaptive Chaotic Gray Wolf Optimization Algorithm (ACGWO), Primitive Dung Beetle Optimization Algorithm (DBO), Whale Optimization Algorithm (WOA), Crayfish Optimization Algorithm (COA), and Hyper-Heuristic Whale Optimization Algorithm (HHWOA) in complex agricultural UAV environments. Experimental results show that the path lengths calculated by HMSDBO are reduced by 21.3%, 7.88%, 19.95%, 8.09%, and 4.2%, respectively, compared to the aforementioned algorithms. This reduction significantly enhances both the optimization effectiveness and the smoothness of three-dimensional path planning for agricultural UAVs.
hyper-heuristic whale optimization algorithm, Agriculture (General), route planning, unmanned aerial vehicle, dung beetle optimization algorithm, S1-972
hyper-heuristic whale optimization algorithm, Agriculture (General), route planning, unmanned aerial vehicle, dung beetle optimization algorithm, S1-972
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
