Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EAI Endorsed Transac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EAI Endorsed Transactions on Energy Web
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximum Power Tracking System for Photovoltaic Power Generation in Local Shadow Environment Based on Ant Colony Optimization Fuzzy Algorithm

Authors: Fengshun Ye; Hongjuan Ren;

Maximum Power Tracking System for Photovoltaic Power Generation in Local Shadow Environment Based on Ant Colony Optimization Fuzzy Algorithm

Abstract

INTRODUCTION: Photovoltaic power generation, as a rapidly developing new energy technology, is increasingly receiving attention from countries around the world. However, the efficiency of photovoltaic power generation systems is influenced by various factors. Local shadows have become one of the bottlenecks restricting the development of photovoltaic systems. OBJECTIVES: The research aims to improve the maximum power tracking performance of photovoltaic systems under local shadow conditions. METHODS: A maximum power tracking system based on ant colony optimization fuzzy algorithm is proposed. Research can effectively solve local optimal problems caused by local shadows through ant colony algorithm. Combining fuzzy algorithms can not only improve the tracking accuracy of the maximum power tracking system, but also enhance the adaptability to complex environments. RESULTS: In the simulation experiment results, the error between the ant colony optimization fuzzy algorithm and the actual maximum power in four local shadow environments was 0.21W, 0.55W, 0.27W, and 0.98W, respectively. Both stability and accuracy were superior to ant colony algorithm, fuzzy algorithm, and perturbation observation method. CONCLUSION: Research has confirmed the potential value of ant colony optimization fuzzy algorithm in maximum power tracking of photovoltaic power generation, providing a new solution for the operation and management of photovoltaic power plants.

Related Organizations
Keywords

ant colony fuzzy algorithm, Science, Electronic computers. Computer science, Q, QA1-939, Maximum power tracking system, Local shadows, QA75.5-76.95, Photovoltaic power generation, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold