Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2021
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Structural Concrete
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of fiber orientation on the behavior of fiber reinforced concrete slabs

Authors: Conforti A.; Cuenca E.; Zerbino R.; Plizzari G. A.;

Influence of fiber orientation on the behavior of fiber reinforced concrete slabs

Abstract

AbstractAfter several decades of research studies, design rules for fiber reinforced concrete (FRC) are now available for several structural elements. Starting from standard tests, it is possible to determine design parameters and constitutive laws to perform simplified sectional verifications and/or numerical analyses. However, one of the main issues still open is represented by the fiber orientation in the real structure that could be different from the one present in standard tests. For this reason, building codes take into account orientation factors to modify the standard material properties. The present paper aims to shed some new lights on the effects of the orientation of steel and macro‐synthetic fibers on the local variability of FRC residual strength properties in slabs made with two concretes: Vibrated (slump of 80 ± 20 mm, V‐FRC) and self‐compacting concrete (slump flow diameter of 700 ± 50 mm, SC‐FRC). In V‐FRC slabs, the orientation of polymer fibers was more influenced by pouring and compaction process compared to steel ones. In SC‐FRC slabs, the flow and wall effects resulted more significant when long steel fibers were used. The post‐cracking performances locally determined in different points of slabs were compared against the ones obtained on standard beams as well. Finally, the global response of these slabs was numerically studied by considering two different support configurations: simply‐supported slabs and slabs on grade.

Countries
Argentina, Italy
Keywords

steel fibers, fiber orientation, slabs, STEEL FIBERS, fiber orientation; fiber reinforced concrete; macro-synthetic fibers; slabs; steel fibers, MACRO-SYNTHETIC FIBERS, FIBER REINFORCED CONCRETE, SLABS, fiber reinforced concrete, FIBER ORIENTATION, https://purl.org/becyt/ford/2.1, https://purl.org/becyt/ford/2, macro-synthetic fibers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!