Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy

Authors: Borys Sytnik; Volodymyr Bryksin; Sergiy Yatsko; Yaroslav Vashchenko;

Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy

Abstract

We have proposed an analytical method for limiting the complexity of neural-fuzzy models that provide for the guaranteed accuracy of their implementation when approximating functions with two or more derivatives. The method makes it possible to determine the required minimal number of parameters for systems that employ fuzzy logic, as well as neural models. We have estimated the required number of neurons (terms) in a model, which ensure the accuracy required for the area of a model curve to approach the system one along the sections of function approximation. The estimate for an approximation error was obtained based on the residual members of decomposition, in the Lagrangian form, of areas of the approximated system function into a Maclaurin series. The results received make it possible to determine the required number of approximation sections and the number of neurons (terms) in order to ensure the assigned relative and absolute error of approximation. We have estimated the required number of neurons (terms) that provide for the necessary accuracy of model implementation based on the maximum deviation between the system and model curves along the section of approximation. This makes it possible to select, depending on the assigned required accuracy, the number of terms of fuzzy variables, input and output variables, linguistic rules, coordinates of modal values along the axes of input and output variables. To verify validity of the proposed solutions, we modeled the system curves in the Matlab/Simulink environment, which confirmed the guaranteed accuracy of their implementation in accordance with the analytical calculations reported earlier. The results obtained could be applied in modern intelligent technical systems of management, control, diagnosis, and decision-making. Using the proposed methods for selecting and applying the minimal number of terms (neurons) would help reduce the required computing power in nonlinear systems

Keywords

апроксимація; гарантована точність; нечітка логіка; нейронні мережі; імітаційне моделювання, UDC 681.5.015:007, аппроксимация; гарантированная точность; нечеткая логика; нейронные сети; имитационное моделирование, approximation; guaranteed accuracy; fuzzy logic; neural networks; imitation simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 2
  • 3
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
3
2
gold