Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical Physics &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedical Physics & Engineering Express
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fitting the determined impedance in the guinea pig inner ear to Randles circuit using square error minimization in the range of 100 Hz to 50 kHz

Authors: M O Pleshkov; S D’Alessandro; M V Svetlik; D N Starkov; V A Zaitsev; M Handler; D Baumgarten; +4 Authors

Fitting the determined impedance in the guinea pig inner ear to Randles circuit using square error minimization in the range of 100 Hz to 50 kHz

Abstract

Abstract Objective. Several lumped and distributed parameter models of the inner ear have been proposed to improve vestibular implant stimulation. The models should account for all significant physical phenomena that influence the current propagation, such as the electrical double layer (EDL) and medium polarization. The electrical properties of the medium are reflected in the electrical impedance; therefore, the study aimed to measure the impedance in the guinea pig inner ear and construct its equivalent circuit. Approach. The electrical impedance was measured from 100 Hz to 50 kHz between a pair of platinum electrodes immersed in 0.9% NaCl saline solution using sinusoidal voltage signals. The Randles circuit was fitted to the measured impedance in the saline solution in order to estimate the EDL parameters ( C , W , a n d R c t ) of the electrode interface in saline. Then, the electrical impedance was measured between all combinations of the electrodes located in the semicircular canal ampullae and the vestibular nerve in the guinea pig in vitro. The extended Randles circuit considering the medium polarization ( R i , R e , C m ) together with EDL parameters ( C , R c t ) obtained from the saline solution was fitted to the measured impedance of the guinea pig inner ear. The Warburg element was assumed negligible and was not considered in the guinea pig model. Main results. For the set-up used, the obtained EDL parameters were: C = 27.09 * 10 − 8 F , R c t = 18.75 k Ω . The average values of intra-, extracellular resistances, and membrane capacitance were R i = 4.74 k Ω , R e = 45.05 k Ω , C m = 9.69 * 10 − 8 F , respectively. Significance. The obtained values of the model parameters can serve as a good estimation of the EDL for modelling work. The EDL, together with medium polarization, plays a significant role in the electrical impedance of the guinea pig inner ear, therefore, they should be considered in electrical conductivity models to increase the credibility of the simulations.

Keywords

inner ear, TISSUES, поляризация, Guinea Pigs, Electric Capacitance, двойной электрический слой, Electric Impedance, Animals, Electrodes, electrical impedance, polarization, equivalent circuit, морские свинки, ELECTRICAL-STIMULATION, ANATOMY, электрический импеданс, electrical double layer, Ear, Inner, Saline Solution, DIELECTRIC-PROPERTIES, внутреннее ухо, guinea pig

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid