
arXiv: 2510.01511
We propose a divide-and-conquer (DAC) algorithm for constrained convex optimization over networks, where the global objective is the sum of local objectives attached to individual agents. The algorithm is fully distributed: each iteration solves local subproblems around selected fusion centers and coordinates only with neighboring fusion centers. Under standard assumptions of smoothness, strong convexity, and locality on the objective function, together with polynomial growth conditions on the underlying graph, we establish exponential convergence of the DAC iterations and derive explicit bounds for both exact and inexact local solvers. Numerical experiments on three representative losses ($L_2$ distance, quadratic, and entropy) confirm the theory and demonstrate scalability and effectiveness.
FOS: Computer and information sciences, Numerical Analysis, Optimization and Control (math.OC), Optimization and Control, FOS: Mathematics, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Numerical Analysis (math.NA)
FOS: Computer and information sciences, Numerical Analysis, Optimization and Control (math.OC), Optimization and Control, FOS: Mathematics, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Numerical Analysis (math.NA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
