Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of deep learning-based models for detection of diseased trees using an image compression algorithm

Authors: Assiya Sarinova; Leila Rzayeva; Gulnara Abitova; Alimzhan Yessenov; Ansar Sansyzbayev; Yerassyl Omirtay;

Comparison of deep learning-based models for detection of diseased trees using an image compression algorithm

Abstract

The object of the research is the application of deep learning algorithms using an improved mathematical lossless image compression method for recognizing and identifying dead trees in aerospace images. The main problem that has been solved is the archiving of images due to their large volume on disk and the possibility of their further processing by deep learning methods such as convolutional and capsule neural networks, which have shown high efficiency and accuracy in image recognition and classification tasks using the proposed new image compression method. The article presents a comparative analysis of the performance of three YOLO (You Only Look Once) models with different types of architectures, such as YOLOv5, YOLOv7 and YOLOv8, to assess the effectiveness of their work for the task of recognizing aerospace tree images obtained from satellites, drones, and aircrafts. Comprehensive analysis of YOLO models presents that model YOLO v8 turned out to be most effective with a positive accuracy of 88.2 %, a recall of 77.4 %, and a mAP50 score of 87.2 %. Moreover, the average detection time was only 0.052 seconds for each image, even though the model size remains very small – 21.5 MB. These results suggest a much better usage of time and precise identification of dead trees, and classified targets with high efficiency. From the research, there is significant prospects of global forest management especially on forest reduction and protection of ecosystems through accurate assessment on the health of forestry. The proposed approach is universal and can be used in real life conditions, providing a good compromise of the speed, accuracy and resources required for forest monitoring and management

Related Organizations
Keywords

комп’ютерний зір, модель YOLO, forest management, deep learning, стиснення зображення, глибоке навчання, YOLO model, image compression, computer vision, управління лісами

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold