
Practical and efficient algorithms for concurrent data structures are difficult to construct and modify. Algorithms in the literature are often optimized for a specific setting, making it hard to separate the algorithmic insights from implementation details. The goal of this work is to systematically construct algorithms for a concurrent data structure starting from its sequential implementation. Towards that goal, we follow a construction process that combines manual steps corresponding to high-level insights with automatic exploration of implementation details. To assist us in this process, we built a new tool called Paraglider. The tool quickly explores large spaces of algorithms and uses bounded model checking to check linearizability of algorithms. Starting from a sequential implementation and assisted by the tool, we present the steps that we used to derive various highly-concurrent algorithms. Among these algorithms is a new fine-grained set data structure that provides a wait-free contains operation, and uses only the compare-and-swap (CAS) primitive for synchronization.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
