
We address the problem of learning a kernel for a given supervised learning task. Our approach consists in searching within the convex hull of a prescribed set of basic kernels for one which minimizes a convex regularization functional. A unique feature of this approach compared to others in the literature is that the number of basic kernels can be infinite. We only require that they are continuously parameterized. For example, the basic kernels could be isotropic Gaussians with variance in a prescribed interval or even Gaussians parameterized by multiple continuous parameters. Our work builds upon a formulation involving a minimax optimization problem and a recently proposed greedy algorithm for learning the kernel. Although this optimization problem is not convex, it belongs to the larger class of DC (difference of convex functions) programs. Therefore, we apply recent results from DC optimization theory to create a new algorithm for learning the kernel. Our experimental results on benchmark data sets show that this algorithm outperforms a previously proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
