Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ALGORITHM-HARDWARE CODESIGN OF A FAST PARALLEL ROUTING ARCHITECTURE FOR CLOS NETWORKS

Authors: S. Q. ZHENG; A. GUMASTE; E. LU;

ALGORITHM-HARDWARE CODESIGN OF A FAST PARALLEL ROUTING ARCHITECTURE FOR CLOS NETWORKS

Abstract

Clos networks are an important class of switching networks due to their modular structure and much lower cost compared with crossbars. For routing I/O permutations of Clos networks, sequential routing algorithms are too slow, and all known parallel algorithms are not practical. We present the algorithm-hardware codesign of a unified fast parallel routing architecture called distributed pipeline routing (DPR) architecture for rearrangeable nonblocking and strictly nonblocking Clos networks. The DPR architecture uses a linear interconnection structure and processing elements that performs only shift and logic AND operations. We show that a DPR architecture can route any permutation in rearrangeable nonblocking and strictly nonblocking Clos networks in [Formula: see text] time. The same architecture can be used to carry out control of any group of connection/disconnection requests for strictly nonblocking Clos networks in [Formula: see text] time. Several speeding-up techniques are also presented. This architecture is designed for Clos-based packet and circuit switches of practical sizes.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!