Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Methods and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Methods and Programs in Biomedicine
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction

Authors: Changjian, Zhou; Zhongzheng, Li; Jia, Song; Wensheng, Xiang;

TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction

Abstract

Recent studies have emphasized the significance of computational in silico drug-target binding affinity (DTA) prediction in the field of drug discovery and drug repurposing. However, existing DTA prediction approaches suffer from two major deficiencies that impede their progress. Firstly, while most methods primarily focus on the feature representations of drug-target binding affinity pairs, they fail to consider the long-distance relationships of proteins. Furthermore, many deep learning-based DTA predictors simply model the interaction of drug-target pairs through concatenation, which hampers the ability to enhance prediction performance.To address these issues, this study proposes a novel framework named TransVAE-DTA, which combines the transformer and variational autoencoder (VAE). Inspired by the early success of VAEs, we aim to further investigate the feasibility of VAEs for drug structure encoding, while utilizing the transformer architecture for target feature representation. Additionally, an adaptive attention pooling (AAP) module is designed to fuse the drug and target encoded features. Notably, TransVAE-DTA is proven to maximize the lower bound of the joint likelihood of drug, target, and their DTAs.Experimental results demonstrate the superiority of TransVAE-DTA in drug-target binding affinity prediction assignments on two public Davis and KIBA datasets.In this research, the developed TransVAE-DTA opens a new avenue for engineering drug-target interactions.

Related Organizations
Keywords

Drug Delivery Systems, Electric Power Supplies, Drug Discovery, Drug Repositioning, Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!