
arXiv: 2503.23058
Software systems are expansive, exhibiting behaviors characteristic of complex systems, such as self-organization and emergence. These systems, highlighted by advancements in Large Language Models (LLMs) and other AI applications developed by entities like DeepMind and OpenAI showcase remarkable properties. Despite these advancements, there is a notable absence of effective tools for empirically measuring software system complexity, hindering our ability to compare these systems or assess the impact of modifications on their properties. Addressing this gap, we propose the adoption of statistical complexity, a metric already applied in fields such as physics, biology, and economics, as an empirical measure for evaluating the complexity of software systems. Our approach involves calculating the statistical complexity of software systems modeled as multi-layer networks validated by simulations and theoretical comparisons. This measure offers insights into the organizational structure of software systems, exhibits promising consistency with theoretical expectations, and paves the way for leveraging statistical complexity as a tool to deepen our understanding of complex software systems and into their plausible and unplausible emergent behaviors.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
