
arXiv: 1808.01081
Consensus is one of the key problems in blockchains. There are many articles analyzing the performance of threat models for blockchains. But the network stability seems lack of attention, which in fact affects the blockchain performance. This paper studies the performance of a well adopted consensus algorithm, Raft, in networks with non-negligible packet loss rate. In particular, we propose a simple but accurate analytical model to analyze the distributed network split probability. At a given time, we explicitly present the network split probability as a function of the network size, the packet loss rate, and the election timeout period. To validate our analysis, we implement a Raft simulator and the simulation results coincide with the analytical results. With the proposed model, one can predict the network split time and probability in theory and optimize the parameters in Raft consensus algorithm.
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 179 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
