
The increasing use of e-scooters in urban areas has raised safety concerns, necessitating research for effective safety interventions. This study analyzes three years of e-scooter crash data from the United Kingdom using statistical and machine learning methods to identify key factors influencing crash severity. We employed a random parameters logit model and investigated several machine learning algorithms, with XGBoost performing best. Analysis reveals that severe injuries are more likely in crashes involving senior riders, at night with lighting, and at T, staggered, or crossroad junctions. Further insights from the XGBoost-SHAP analysis and heterogeneity in means and variances of random parameters revealed nuanced patterns. While crashes involving female riders or crashes at give way or uncontrolled junctions typically have less severe outcomes, specific condition (young female riders or nighttime crashes at these junctions) intensify the risk of severe injuries. These insights advocate for tailored public policy adjustments and infrastructure enhancements to mitigate e-scooter risks, ensuring safer urban mobility for all demographics.
Interpretable machine learning, Electric scooter, Unobserved heterogeneity, E-scooter injury severity, Micromobility, Transportation and communications, HE1-9990
Interpretable machine learning, Electric scooter, Unobserved heterogeneity, E-scooter injury severity, Micromobility, Transportation and communications, HE1-9990
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
