
doi: 10.1049/cmu2.12607
Abstract Digital signature schemes are used for the authentication and verification of signatures. The Courtois–Finiasz–Sendrier (CFS) digital signature is a well‐known code‐based digital signature scheme based on the Niederreiter cryptosystem. However, it is not widely used due to the computation time of the signing algorithm. Most code‐based digital signature schemes are based on the Niederreiter cryptosystem. This paper proposes a new code‐based digital signature that is based on the McEliece cryptosystem. Key generation, signing, and verification algorithms are presented. The key generation algorithm constructs a public key using random inverse matrices. The signing algorithm has lower complexity and requires less computation time than the CFS scheme to sign a document. The verification algorithm is able to detect forgeries. It is shown that the proposed scheme is secure against public key structural attacks.
McEliece cyptosystem, private key cryptography, Telecommunication, digital signatures, TK5101-6720, public key cryptography
McEliece cyptosystem, private key cryptography, Telecommunication, digital signatures, TK5101-6720, public key cryptography
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
