Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Residual Diffusion Models for Variable-Rate Joint Source Channel Coding of MIMO CSI

Authors: Ankireddy, Sravan Kumar; Kim, Heasung; Kim, Hyeji;

Residual Diffusion Models for Variable-Rate Joint Source Channel Coding of MIMO CSI

Abstract

Despite significant advancements in deep learning-based CSI compression, some key limitations remain unaddressed. Current approaches predominantly treat CSI compression as a source coding problem, neglecting transmission errors. In finite block length regimes, separate source and channel coding proves suboptimal, with reconstruction performance deteriorating significantly under challenging channel conditions. While existing autoencoder-based compression schemes can be readily extended to support joint source-channel coding, they struggle to capture complex channel distributions and exhibit poor scalability with increasing parameter count. To overcome these inherent limitations of autoencoder-based approaches, we propose Residual-Diffusion Joint Source-Channel Coding (RD-JSCC), a novel framework that integrates a lightweight autoencoder with a residual diffusion module to iteratively refine CSI reconstruction. Our flexible decoding strategy balances computational efficiency and performance by dynamically switching between low-complexity autoencoder decoding and sophisticated diffusion-based refinement based on channel conditions. Comprehensive simulations demonstrate that RD-JSCC significantly outperforms existing autoencoder-based approaches in challenging wireless environments. Furthermore, RD-JSCC offers several practical features, including a low-latency 2-step diffusion during inference, support for multiple compression rates with a single model, robustness to fixed-bit quantization, and adaptability to imperfect channel estimation.

13 pages, 11 figures

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green