
arXiv: 2501.12261
There has been considerable recent interest in computing a diverse collection of solutions to a given optimization problem, both in the AI and theory communities. Given a classical optimization problem $Π$ (e.g., spanning tree, minimum cuts, maximum matching, minimum vertex cover) with input size $n$ and an integer $k\geq 1$, the goal is to generate a collection of $k$ maximally diverse solutions to $Π$. This diverse-X paradigm not only allows the user to generate very different solutions, but also helps make systems more secure and robust by handling uncertainty, and achieve energy efficiency. For problems $Π$ in P (such as spanning tree and minimum cut), there are efficient $\text{poly}(n,k)$ approximation algorithms available for the diverse variants [Hanaka et al. AAAI 2021, 2022, 2023, Gao et al. LATIN 2022, de Berg et al. ISAAC 2023]. In contrast, only FPT algorithms are known for NP-hard problems such as vertex covers and independent sets [Baste et al. IJCAI 2020, Eiben et al. SODA 2024, Misra et al. ISAAC 2024, Austrin et al. ICALP 2025], but in the worst case, these algorithms run in time $\exp((kn)^c)$ for some $c>0$. In this work, we address this gap and give $\text{poly}(n,k)$ or $f(k)\text{poly}(n)$ time approximation algorithms for diversification variants of several NP-hard problems such as knapsack, maximum weight independent sets (MWIS) and minimum vertex covers in planar graphs, geometric (rectangle) knapsack, enclosing points by polygon, and MWIS in unit-disk-graphs of points in convex position. Our results are achieved by developing a general framework and applying it to problems with textbook dynamic-programming algorithms to find one solution.
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), F.2.2
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), F.2.2
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
