Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperspectral Identification of Milk Adulteration Using Advance Deep Learning

Authors: Muhammad Aqeel; Ahmed Sohaib; Muhammad Iqbal; Syed Sajid Ullah;

Hyperspectral Identification of Milk Adulteration Using Advance Deep Learning

Abstract

Food adulteration poses significant health risks globally and is rigorously monitored by safety authorities. In developing nations, where milk is highly prone to contamination (with Brazil, India, China, and Pakistan producing half of the world’s milk), stringent detection and classification techniques are essential. This study employs both destructive and non-destructive methods for milk adulteration analysis. The destructive method uses Lactoscan for comprehensive qualitative measurements, including temperature, pH, conductivity, solids, protein, density, fat content, and SNF. The non-destructive method utilizes hyperspectral imaging (HSI) with the Specim Fx-10 (397–1003 nm) for image-based analysis, involving preprocessing steps like image scaling, ROI selection, radiometric correction, and spectral reflectance extraction using the empirical line method (ELM). Advanced deep learning models, including Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU), are employed to predict and classify pure and adulterated milk spectra. CNNs showed superior performance in identifying adulteration trends. The proposed pipeline, validated with a 97% accuracy, outperforms state-of-the-art techniques based on metrics such as Kappa, accuracy, precision, recall, F1-score, MCC, and Jaccard Index.

Keywords

Milk adulteration, Hyperspectral imaging, hyperspectral imaging, food quality control, deep learning, Deep learning, Spectral reflectance signature, VDP::Technology: 500::Information and communication technology: 550, Electrical engineering. Electronics. Nuclear engineering, Food quality control, spectral reflectance signature, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Related to Research communities