
arXiv: 1809.08170
We present an improved method for computing incompressible viscous flow around suspended rigid particles using a fixed and uniform computational grid. The main idea is to incorporate Peskin's regularized delta function approach [Acta Numerica 11 (2002) 1] into a direct formulation of the fluid-solid interaction force in order to allow for a smooth transfer between Eulerian and Lagrangian representations while at the same time avoiding strong restrictions of the time step. This technique was implemented in a finite-difference and fractional-step context. A variety of two- and three-dimensional simulations are presented, ranging from the flow around a single cylinder to the sedimentation of 1000 spherical particles. The accuracy and efficiency of the current method are clearly demonstrated.
Finite volume methods applied to problems in solid mechanics, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics, Computational Physics (physics.comp-ph), Physics - Computational Physics, Finite difference methods applied to problems in fluid mechanics
Finite volume methods applied to problems in solid mechanics, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics, Computational Physics (physics.comp-ph), Physics - Computational Physics, Finite difference methods applied to problems in fluid mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
