Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2003 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal space-time constellations from groups

Authors: Hughes, Brian L.;

Optimal space-time constellations from groups

Abstract

Summary: We consider the design of space-time constellations based on group codes for fading channels with multiple transmit and receive antennas. These codes can be viewed as multiantenna extensions of phase-shift keying (PSK), in the sense that all codewords have equal energy, all are rotations of a fixed codeword, and there is a simple differential transmission rule that allows data to be sent without channel estimates at the transmitter or receiver. For coherent detection, we show that all optimal full-rank space-time group codes are unitary (each code matrix has equal-energy, orthogonal rows). This leads to a simpler code design criterion and suggests that unitary codes may play an important role in coherent as well as noncoherent communication. For any number of transmit antennas \(t\), we then use the design criterion to characterize all full-rank unitary space-time group codes of minimum block length (also \(t\)) which have \(2^p\) codewords. These results allow us to characterize all optimal \(2^p\)-ary unitary group codes with square code matrices. This restricted class of block codes matches the class proposed for differential modulation by \textit{B.L. Hughes} [IEEE Trans. Inf. Theory 46, 2567--2578 (2000; Zbl 1008.94007)], and by \textit{B. Hochwald} and \textit{W. Sweldens} [IEEE Trans. Commun. 48, 2041--2052 (2000)].

Keywords

Communication theory, Channel models (including quantum) in information and communication theory, Combined modulation schemes (including trellis codes) in coding theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Average
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!