
Story completion is a very challenging task of generating the missing plot for an incomplete story, which requires not only understanding but also inference of the given contextual clues. In this paper, we present a novel conditional variational autoencoder based on Transformer for missing plot generation. Our model uses shared attention layers for encoder and decoder, which make the most of the contextual clues, and a latent variable for learning the distribution of coherent story plots. Through drawing samples from the learned distribution, diverse reasonable plots can be generated. Both automatic and manual evaluations show that our model generates better story plots than state-of-the-art models in terms of readability, diversity and coherence.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
