
With the globalization of the supply chain and the change of demand environment, designing an effective logistic system in the sustainable development of the supply chain becomes more critical. This study proposes a location-routing problem to determine an efficient integration of single factory and multi-distribution centers and multi-customers in uncertain demands. This problem can be regarded as an optimization integrating location, distribution decision, and routing management. The objective function is to minimize the total cost and satisfy all the requirements, which is a highly complex NP-hard problem, so a hybrid algorithm of genetic algorithm (GA) and tabu search (TS) algorithm is proposed. A fuzzy c-means clustering algorithm is used to produce an initial solution. Fuzzy triangular number and confidence interval transformation are used to deal with fuzzy customer demand. The research findings concludes that (i) determine the numbers of facilities with locations that should be opened and (ii) minimize the total cost in supply chain. The experiments prove that the proposed hybrid algorithm of GA and TS algorithm overcomes the defect of local optimum in the literature viewpoint, and the optimization algorithms can effectively solve the location-routing problem.
fuzzy demand, fuzzy c-means algorithm, genetic algorithm, tabu search, Electrical engineering. Electronics. Nuclear engineering, Location-routing problem, TK1-9971
fuzzy demand, fuzzy c-means algorithm, genetic algorithm, tabu search, Electrical engineering. Electronics. Nuclear engineering, Location-routing problem, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
