Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Machine Learning
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploration and generalization in deep learning with SwitchPath activations

Authors: Di Cecco A.; Papini A.; Metta C.; Fantozzi M.; Galfrè S. G.; Morandin F.; Parton M.;

Exploration and generalization in deep learning with SwitchPath activations

Abstract

This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by probabilistically toggling between a neuron standard activation and its negation. We develop theoretical foundations and demonstrate its impact in multiple scenarios. By maintaining gradient flow and injecting controlled stochasticity, the method improves generalization, uncertainty estimation, and training efficiency. Experiments in classification show consistent gains over ReLU and Leaky ReLU across CNNs and Vision Transformers, with reduced overfitting and better test accuracy. In generative modeling, a novel two-phase training scheme significantly mitigates mode collapse and accelerates convergence. Our theoretical analysis reveals that SwitchPath introduces a form of multiplicative noise that acts as a structural regularizer. Additional empirical investigations show improved information propagation and reduced model complexity. These results establish this activation mechanism as a simple yet effective way to enhance exploration, regularization, and reliability in modern neural networks.

Country
Italy
Keywords

Deep learning, Neural network algorithms, Generative networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
EGI : advanced computing for research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!