
handle: 20.500.14243/552044
This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by probabilistically toggling between a neuron standard activation and its negation. We develop theoretical foundations and demonstrate its impact in multiple scenarios. By maintaining gradient flow and injecting controlled stochasticity, the method improves generalization, uncertainty estimation, and training efficiency. Experiments in classification show consistent gains over ReLU and Leaky ReLU across CNNs and Vision Transformers, with reduced overfitting and better test accuracy. In generative modeling, a novel two-phase training scheme significantly mitigates mode collapse and accelerates convergence. Our theoretical analysis reveals that SwitchPath introduces a form of multiplicative noise that acts as a structural regularizer. Additional empirical investigations show improved information propagation and reduced model complexity. These results establish this activation mechanism as a simple yet effective way to enhance exploration, regularization, and reliability in modern neural networks.
Deep learning, Neural network algorithms, Generative networks
Deep learning, Neural network algorithms, Generative networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
