Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers of Compute...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Frontiers of Computer Science
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Organization-based agent-oriented programming: model, mechanisms, and language

Authors: Cuiyun Hu; Xinjun Mao; Mengjun Li; Zhi Zhu;

Organization-based agent-oriented programming: model, mechanisms, and language

Abstract

An increasing number of social computational systems consist of a great amount of autonomous entities and operate in highly dynamic and unpredictable environments. To construct such systems needs to seek high-level abstraction to manage the complexity of the systems and novel mechanism to support their characteristics, i.e., dynamism and flexibility. Agent-oriented programming (AOP) is considered as a potential paradigm for developing such systems by exhibiting a number of characteristics, such as autonomy, flexibility, social ability, etc. However, current researches on AOP mainly focus on the construction of multi-agent system (MAS) with theory and language facilities inspired from artificial intelligence (AI) and distributed AI, seldom considering and integrating the proven principles and practices of programming and software engineering. Moreover, abstractions and mechanism based on AI are inadequate for developing dynamic and flexible MAS in open environment. This paper proposes a novel AOP approach, namely Oragent, for constructing and implementing dynamic and flexible systems. From a software engineering perspective, Oragent integrates organizational concepts and mechanism into AOP language, and support the dynamism and flexibility with explicit primitives. The proposed approach consists of a programming model and a corresponding programming language. This paper presents the syntax and formal operational semantics of Oragent language, and studies a case to demonstrate our approach.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!