
IEEE Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
Equipment Failure Analysis, Artificial Intelligence and Image Processing, Applied Mathematics, Artificial Intelligence & Image Processing, Electrical and Electronic Engineering, Vibration, Algorithms
Equipment Failure Analysis, Artificial Intelligence and Image Processing, Applied Mathematics, Artificial Intelligence & Image Processing, Electrical and Electronic Engineering, Vibration, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
